
IARJSET ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
ISO 3297:2007 Certified

Vol. 5, Issue 2, February 2018

Copyright to IARJSET DOI 10.17148/IARJSET.2018.5210 61

Based Development of a PC and Smartphone

Based Wireless Automobile Diagnostic System

Selvaraj D
1
, Arulkumar D

2
, Dhinakaran D

3

Professor, Department of Electronics and Communication Engineering, Panimalar Engineering College,

Poonamallee, Chennai, India
1

Assistant Professor (G-I), Department of Electronics and Communication Engineering,

Panimalar Institute of Technology, Poonamallee, Chennai, India
2

Assistant Professor, Department of Computer Science and Engineering, Peri Institute of Technology,

Manivakkam, Chennai, India
3

Abstract: The design, implementation and testing of an automobile Engine Control Unit (ECU) data acquisition system

is presented. The ECU parameters are graphically analyzed on a PC (Windows/Linux) or a smart phone. The graphical

analysis software for real-time data monitoring are developed on Qt framework for PC use and android platform for

smart phone use. The use of open source software Qt framework and android SDK for GUI development is a highlight

of this system. The wireless communication features of the system using Zigbee technology allows remote real-time

monitoring of the vehicle on test track.

Keywords: Android, Engine Control Unit, OBD protocol, Qt Framework, Zigbee.

I. INTRODUCTION

The microprocessor based system responsible for the synchronization of various sub systems of an automobile. The

ECU collects sensor values from different parts of the engine and performs the appropriate actions [1]. The ECU logs

will allow easy identification of errors and subsequent repairs. The commercially available automobile diagnostic

equipment suffer from numerous draw backs like non-support of hardware up gradation, most of them have

sluggish operation which cannot match the needs of real-time diagnostics and inadequate network capability. Hu et.al

[2] has designed a diagnostic system based on Freescale16-bit microcontroller with the graphical software developed on

Microsoft Visual Basic 6.0. PC based diagnostic system with internet updates has been proposed by Jim et al. [3] which

exemplify the prevailing trend in this domain.

In this paper, the development of low cost, fast, wireless and network capable automobile diagnostic system is

proposed. The system is based on the industry standard Onboard Diagnostic -II (OBD-II) standard. The PC based

analysis software is platform independent and can run on both Windows and Linux systems. The forth coming

sections discuss the different aspects of the wireless automobile diagnostic system.

II. ONBOARD DIAGNOSTIC STANDARD

OBD system was originally conceived as mechanism to monitor efficiency of engine and thus control vehicle exhaust

emission. Different car manufacturers came up with their own proprietary Data Link Connecter (DLC), fault

code and communication protocols for their cars. OBD-II provides a common platform for automobile fault detection.

Different automobile manufacturers use signaling protocols to communicate with the ECU.

TABLE I. DEFINITION OF OBD – II STANDARD [1]

Physical Layer ISO9141-2 SAE J1850 ISO14230-1
ISO 11898

ISO 15765-4

Data link Layer ISO9141-2 SAE J1850 ISO14230-2
ISO 11898

ISO 15765-4

Network Layer
ISO 15765-2

ISO 15765-4

Transport Layer

Session Layer

Presentation Layer ISO 15765-4

Application Layer
SAE J1979

ISO 15031-5

SAE J1979

ISO 15031-5

SAE J1979

ISO 15031-5

SAE J1979/ ISO

15031-5

IARJSET ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
ISO 3297:2007 Certified

Vol. 5, Issue 2, February 2018

Copyright to IARJSET DOI 10.17148/IARJSET.2018.5210 62

There are five widely used signaling protocols namely SAEJ1850 (PWM), SAEJ1850 (PVM), ISO14230 (KWP-

2000), ISO9141 and ISO15765-4/SAEJ2480 (CAN). The OBD–II standard integrates these protocols at the application

layer even though they are different at the physical and data link layer.

The OBD –II assigns a unique parameter ID (PID) to specific data request type. The user has to send the

appropriate PID to the ECU using OBD –II to retrieve particular information and the ECU will respond with a sequence

of bytes. The OBD-II standard groups the PID’s into 9 modes each corresponding to different category of requests. For

instance the mode 1 display current real time data such as the results of engine RPM sensor and mode 7 displays

pending Diagnostic Trouble Codes (DTC). The diagnostic scan tools based on OBD-II send a message to the ECU to

retrieve information. The footer contains a check sum field. The ECU responds to this request with a series of bytes.

The response can either be bit encoded or simply value based bytes.

III. SYSTEM DESIGN

The hardware and software design of the wireless automobile diagnostic system is presented in the upcoming

paragraphs.

A. Hardware design and integration

The automobile diagnostic system is built around the chip STN1110 [4]. The chip communicates with engine ECU

through OBD-II protocol and returns requested vehicle parameters. The conversion of data from OBD II to serial

format is also carried out by STN1110. A Zigbee module is directly connected to the serial bus of STN1110 to transfer

the data wirelessly to the PC. The Bluetooth module provides connectivity to the PDA. At the receiver side, to interface

the Zigbee module to the PC, a serial to USB converter built around FTDI23RL chip is used, as presently most

laptops/PC’s lack serial ports. The overall block diagram of the system hardware on the transmitter and receiver side is

shown in the figures 1 and 2.

Fig.1 Block diagram of the system hardware – Transmitter side (vehicle)

Fig.2 Block diagram of the system hardware – Receiver side

OBD-II compliant vehicles have a standardized diagnostic link connector (DLC) allowing a scan tools to be used on all

vehicles. The DLC is placed under the dashboard. The vehicle-side hardware STN1110 connects to the DLC by means

of an OBD -II to DB-9 cable[5]. To debug the connection errors, the board is provided with four indicator LED’s which

IARJSET ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
ISO 3297:2007 Certified

Vol. 5, Issue 2, February 2018

Copyright to IARJSET DOI 10.17148/IARJSET.2018.5210 63

indicate OBDRx, OBDTx, Rx and Tx. The Blue LINK Bluetooth Module [6] has built-in Voltage regulator and

3V3 to 5V level converter that can be easily interfaced with STN1110 OBD to UART board.

The Zigbee module used for the vehicle end and the PC end used was XBee OEM RF Module [8]. The module is

compatible with the IEEE 802.15.4 (Zigbee). The Rx-Tx voltage levels of XBee module is 3V3. The Zigbee module

can be configured Digi's X-CTU software utility [7]. The Transmitting end hardware assembly is shown in figure 3.

Fig.3 The Transmitting end hardware assembly: The OBD to UART board integrated with the zigbee module,

Bluetooth module and USB to RS232 breakout module.

At the PC receiving side the XBee zigbee module receives data from the vehicle-side XBee zigbee module. The XBee

module is connected to PC using XBee-Explorer board [8].

B. Software design

The analysis software for the automobile diagnostic system has been developed for the PC/Laptop based operation and

PDA/Smartphone based operation. The PC based analysis software was intended to be platform independent; the

software development was hence carried out using Qt framework [9]. Android application has been developed to allow

the analysis of ECU data in real-time on smart phones.[9].

The architecture of the PC based application software is shown in figure 4. The kernel accomplishes various tasks such

as listening to OBD and collecting data from OBD. The GUI will look after the logic in how the user can use

these functions. The GUI layer handles the display of acquired data in attractive way and GUI is rendered to screen. To

display the graphs and dials QWT library (Qt widgets for technical applications) is used. For serial communication

between software and STN1110 hardware QExtSerialPort library is used [10 -12].

Fig.4 Architecture of application software based on Qt

The real time monitoring of data from STN1110 is done using threading functionality of Qt. The serial communication

requires to be run in its own thread; otherwise the GUI will hang by waiting the communication to finish first. Qt

provides a useful class for threading, the QThread class. In order to implement threading the class must inherit the

QThread class, and add run () method to derived class. Whenever the run () method is called, the thread will start

running. Once this run () method is called, it simply create an instance of the derived class and executes start () method.

IARJSET ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
ISO 3297:2007 Certified

Vol. 5, Issue 2, February 2018

Copyright to IARJSET DOI 10.17148/IARJSET.2018.5210 64

A SerialPortReader class is created to implement the real- time monitoring of sensor data from STN1110.

SerialPortReader subclasses Qthread and implements the run () method for the continuous monitoring of sensors. Once

off calls to the ECU do not require to run in their own thread, so these are just handled using a normal method. Every

time the application is executed it begins monitoring sensors, by simply starting the SerialPortReader thread. Within the

run of this, it loops around different sensor PIDs and communicates with the ECU in order to update each of these

sensors values continuously. The sensors then emit signals as their values change so that slots get the updated value.

QOBJECT macro along with Meta Object Compiler provides the signals and slot functionality in Qt. The signal is

emitted during each reception of sensor value, and the run () method emits the signal. QWT library was used to

implement the widgets in GUI. The dials, graphs are created by inheriting the QWT classes QWTPlot, QWTDial, etc

[10]. All the widgets are created as separate objects, and they are arranged using QT class QHBoxLayout,

QVBoxLayout. The different widgets are tabbed and displayed using QTabWidget class of Qt in the main event loop.

The plots and dials are updated whenever the sensor value is changed. The slots provided on each plot and dials is

connected to the corresponding signals using connect method. Each individual widget is separate object but thread is

called and created once in the main event loop. The GUI contains two different tabs, Graphical view, and Cluster

view[13].

The Android application running on the smart phone initially loads up the GUI. It then waits to establish a Bluetooth

connection with the vehicle end hardware discussed earlier. Using the inflator menu the user can connect to any

Bluetooth device that is already paired. After establishing the connection, the application can now acquire data from

vehicle through Bluetooth data exchange. The values obtained from the STN1110 are displayed on graph using the

a chart engine library. The GUI is coded in XML, the java based UI declarative language.

IV. SYSTEM TESTING AND RESULTS

This section presents the testing of the hardware units of system followed by testing of the completely integrated

system. The hyper terminal and the OBD-II-UART will return the battery voltage. The OBD-II-UART has an auto-

detect feature that can determine which protocol should be used, this feature can be invoked by issuing the command

'ATSP0'. Once, the OBD-II-UART has detected the proper protocol, an 'OK' response seen in the terminal window.

Once the OBD-II-UART has been configured for the proper OBD protocol we can start sending OBD commands to the

board. The OBD commands consist of hexadecimal codes written in ASCII. In the serial terminal, issue the command

'0100' to determine the PIDs supported in mode 01.

A. Vehicle end hardware connectivity testing

This section describes the hardware vehicles end connectivity testing procedure with the ECU. Connect the DB9 OBD

cable to the vehicle DLC and connect the bridge to DB9 STN1110. FTDI USB to connect the serial converter to the

output of the 1110 STN bridge then connect the FTDI card to the USB port of the laptop. Open a serial terminal on the

laptop. Configure the settings for the terminal to use the serial port to which the user is connecting the USB cable, the

transmission settings must be configured for 9600 bps, 8 data bits, 1 stop bit, no parity. Make sure the OBDII-UART is

connected to the vehicle with the OBDII cable. Then, to restart the OBD-II-UART card, enter the characters of the ATZ

'in the terminal and press Enter. This command will cause the OBD-II-UART board to restart. On the plate, LEDs flash

and the start-up message is received in the terminal window. If the missing characters are visible, the serial port is not

correctly configured. Check all settings and try again. Once the communication is established with the card, send the

command to read the battery voltage "ATRV"

B. Full system Testing

The track testing of the fully integrated system was carried out on a Hyundai motors Santro car. The hardware is

connected to the DLC through OBD to DB9 cable. On starting the cat a beep sound was heard and the OBD indicator

was seen on the dash board. When theSTN1110 board is initialized the OBDRx, OBTx, Rx, Tx LEDs blink for a while.

Then the car was driven on an actual track .The complete hardware set

Fig.5. The complete hardware set up in the vehicle end for testing

IARJSET ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
ISO 3297:2007 Certified

Vol. 5, Issue 2, February 2018

Copyright to IARJSET DOI 10.17148/IARJSET.2018.5210 65

Fig.6. The PC end testing set up and screenshot of the GUI displaying data

The track testing of the android application for display the ECU data was carried out using, the android mobile phone

(HTC Wildfire S, Android 2.3 Gingerbread). The mobile phone was placed within the Bluetooth range and

Bluetooth connection was established between the vehicle end device and the mobile phone. The vehicle was driven on

track and various parameters were observed graphically on the android app. The screenshot of the android phone app

testing is shown in figure 7.

Fig.7. The Android app running on HTC Wildfire S phone (Android 2.3

Gingerbread) displaying real-time ECU data (Vehicle Speed, Engine RPM)

up in vehicle end during testing is shown in figure 5.The real time data acquired from the ECU by the hardware was

sent to the laptop via the zigbee wireless ling and displayed on the GUI (Figure 6). The PC/laptop based analysis

software was tested on Windows and Linux platform and data from ECU was displayed on the GUI

V. CONCLUSION

A wireless automobile diagnostic system was developed using commercial off-the-shelf components, the system is

based on the industry standard OBD-II protocol. The system has wireless operation using Bluetooth and Zigbee

technology, thus enabling real-time track testing of the vehicle. The PC based analysis software is platform independent

and can run on both Windows and Linux systems. The Android application allows analysis of ECU data in real-time on

smart phones. The test results indicate that diagnostic system can provide the actual working status of engine or vehicle

in real time thus forming a valuable tool for vehicle maintenance and development of new vehicle models.

REFERENCES

[1] California Air Resources Board ―Technical status update and proposed revisions to malfunction and diagnostics system requirements

application to 1994 and subsequent California passenger cars, light-duty trucks, and medium-duty vehicles-(OBDII)‖. CARB Staff Report,
1991.

[2] Hu Jie , ―Developing PC-Based Automobile Diagnostic System Based on OBD System‖, Power and Energy Engineering Conference

 (APPEEC), 2010 Asia-Pacific, pp 1-5.

[3] Jim Luyckx, Mohan Sethi, Mike Clancy. ― Completely integrateddiagnostic platform using industry standard PCs and internet

update‖. SAE 2004-01-0674H.

[4] STN1110 multiprotocol OBD to UART interpreter IC datasheet, http://www.scantool.net/scantool/downloads / 97/ stn1110-ds.pdf,accessed
on April 4, 2013.

[5] ELM 327 - OBD to RS232 Interpreter data sheet, http://www.elmelectronics.com/dsheets.html accessed on April 4, 2013.

[6] BlueLINK- Bluetooth Module datasheet, www.rhydolabz.com/documents /.../BlueLINK_User_Manual.pdf, accessed on April 4, 2013.

IARJSET ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
ISO 3297:2007 Certified

Vol. 5, Issue 2, February 2018

Copyright to IARJSET DOI 10.17148/IARJSET.2018.5210 66

[7] FT232R is a USB to serial UART interface IC datasheet, http://www.ftdichip.com/Products/ICs/FT232R.htm, accessed on April 4,

2013.

[8] XBee™/XBee-PRO™ OEM RF Modules datasheet, ftp://ftp1.digi.com/support/documentation/ 90000982_A.pdf, accessed
on April 4, 2016.

[9] Jasmin Blanchette, Mark Summerfield, Qt Programming, Prentice Hall,2006.

[10] QTCross platform API and UI framework, http://qt.digia.com/Product/Learning/Education/elearning/onlinetraining/ accessed on April
4, 2016.

[11] QExtSerialPort Cross-platform Library for serial communication, http://code.google.com/p/qextserialport/, accessed on April 4, 2016

[12] QWT (Qt library for technical applications), http://qwt.sourceforge.net/, accessed on April 4, 2013.
[13] Android Developer, http://developer.android.com/, accessed on April 4,2013.

[14] Wang Quanqi, ―Design of Vehicle Bus Data Acquisition and Fault Diagnosis System‖, Conference of Consumer Electronics,

 Communications and Networks (CECNet), 2011, pp 245-248.
[15] Global OBD Vehicle Communication Software Manual, Snap-on Incorporated GlobalOBD Vehicle Communication Software

Manual_EAZ0025B43B.pdf accessed on April 4, 2016.

